
Introduction

The interleukin-1 receptor associated kinases (IRAKs) are a 
family of serine/threonine kinases involved in mediating cel-
lular signalling downstream of the IL-1, IL-18 and a number 
of Toll-like receptors [1]. IRAK-4 is critical for the activation 
of the intracellular signalling cascades, such as the NFКB and 
MAPK pathways, which are essential for the production of 
the inflammatory cytokines [2]. It has been shown that mice 
lacking IRAK-4 are viable and show complete abrogation of 
inflammatory cytokine production in response to IL-1, IL-18 
or LPS.3 similarly, human patients lacking IRAK-4 are severely 
immunocompromised and are not responsive to these 
cytokines [3,4]. The role of IRAK-4 in innate immunity makes 
it an interesting target for inhibition by small molecules [5]. 
Recently, a novel series of amides and imidazo[1,2-α] pyrid-
ines as inhibitors of IRAK-4 have been reported by Buckley 
and co-workers. [6–8].

The experimental measurement of the inhibition activ-
ity of chemicals is difficult, expensive and time-consuming, 
thus a great deal of effort has been put into attempting 
the estimation of activity through statistical modelling. 
Quantitative structure–activity relationship (QSAR) analysis 
is an effective method in research into rational drug design 
and the mechanism of drug actions. In addition, it is useful 
in areas like the design of virtual compound libraries and 
the computational-chemical optimisation of compounds. 
QSAR studies can express the biological activities of com-
pounds as a function of their various structural parameters 
and also describes how the variation in biological activity 
depends on changes in the chemical structure [9]. Recently, 
a QSAR study of biological activity has been published by our 
group [10–12]. If such a relationship can be derived from the 
structure-activity data, the model equation allows medicinal 
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chemists to say with some confidence which properties are 
important in the mechanism of drug action.

The success of a QSAR study depends on choosing robust 
statistical methods for producing the predictive model 
and also the relevant structural parameters for express-
ing the essential features within those chemical structures. 
Nowadays, genetic algorithms (GA) are well known as 
interesting and widely used methods for variable selection 
[11,13–19]. GA are stochastic methods used to solve the opti-
misation problems defined by the fitness criteria, applying the 
evolutionary hypothesis of Darwin and also different genetic 
functions i.e. crossover and mutation. In the present work, 
we have used a genetic algorithm for the variable selection, 
and developed an MLR model for the QSAR analysis of the 
IRAK-4 inhibitors.

In a QSAR study the model must be validated for its pre-
dictive value before it can be used to predict the response of 
additional chemicals. Validating QSAR with external data (i.e. 
data not used in the model development), although demand-
ing, is the best method for validation [20–21]. However the 
availability of an independent external validation set of sev-
eral compounds is rare in QSAR. Thus, the input data set must 
be adequately split by experimental design or other splitting 
procedures into representative training and validation/test 
sets [22–24]. In the present work, the data splitting was per-
formed randomly and was confirmed by the factor spaces 
of the descriptors, as in our previous work [10,16–18,25,26]. 
Finally, the accuracy of the proposed model was illustrated 
using the following: leave one out, bootstrapping and external 
test set, cross-validations and Y-randomisation techniques.

Methodology

Data set
In this study, the data set of 65 amides and imidazo[1,2-α] 
pyridines were collected as IRAK-4 inhibitors, as previously 
reported [6–8]. The inhibitory activity values are expressed as 
the half maximal inhibitory concentration (IC

50
). The chemical 

structures and activity data for the complete set of compounds 
are presented in Table 1. The activity data [IC

50
 (µM)] was con-

verted to the logarithmic scale pIC
50

 [-log IC
50

 (M)] and then 
used for the subsequent QSAR analyses as the response vari-
ables. The data set was randomly divided into two subsets: the 
training set containing 52 compounds (80%) and the test set 
containing 13 compounds (20%). The training set was used to 
build a regression model, and the test set was used to evaluate 
the predictive ability of the model obtained.

Molecular descriptor generation
All of the molecules were drawn into the HyperChem (Version 
7.0 Hypercube, Alberta, Canada)  software and pre-optimised 
using the MM+ molecular mechanics force field. Then a more 
precise optimisation was performed with the semi-empirical 
AM1 method in MOPAC [27]. The molecular structures were 
optimised using the Polak–Ribiere algorithm until the root 
mean square gradient reached 0.01. The CODESSA [28] and 
Dragon packages [29] were used for calculating the molecular 

descriptors. The MOPAC output files were introduced to the 
CODESSA program to calculate two classes of the descriptors: 
electrostatic (minimum and maximum partial charges, polar-
ity parameter, charged partial surface area descriptors etc.), 
and quantum chemical (reactivity indices, dipole moment, 
HOMO and LUMO energies etc.). The molecular structures 
were saved by the HIN extension and entered on the DRAGON 
software for the calculation of the 18 different types of theo-
retical descriptors for each molecule. They included (a) 0D-
constitutional (atom and group counts); (b) 1D-functional 
groups, 1D-atom centered fragments; (c) 2D-topological, 
2DBCUTs, 2D-walk and path counts, 2D-autocorrelations, 
2D-connectivity indices, 2D-information indices, 2D-topo-
logical charge indices, and 2D-eigenvalue-based indices; and 
(d) 3D-Randic molecular profiles from the geometry matrix, 
3D-geometrical, 3D-WHIM, and 3D-GETAWAY descriptors. 
These descriptors could represent a variety of aspects of 
the compounds, and have been successfully used in vari-
ous QSAR and quantitative structure-property relationship 
(QSPR) research. Any descriptors with a constant or almost 
constant value for all the molecules were eliminated. Also, 
any pairs of variables with a correlation coefficient greater 
than 0.90 were classified as inter-correlated, and only one of 
them was considered in developing the model. A total of 557 
descriptors were considered for further investigations after 
discarding the descriptors with constant values and the ones 
that were inter-correlated.

Genetic algorithm
Genetic algorithms (GAs) are governed by biological evolu-
tion rules [30]. These are stochastic optimisation methods 
that have been inspired by evolutionary principles. The 
distinctive aspect of a GA is that it investigates many pos-
sible solutions simultaneously, each of which explores a 
different region in the parameter of space [31]. To select the 
most relevant descriptors, the evolution of the population 
was simulated [32–34]. The first generation population was 
randomly selected; each individual member in the popula-
tion was defined by a chromosome of binary values and 
represented a subset of descriptors. The number of the 
genes at each chromosome was equal to the number of the 
descriptors. A gene was given the value of 1, if its corre-
sponding descriptor was included in the subset; otherwise, 
it was given the value of zero. The number of the genes with 
the value of 1 was kept relatively low to have a small subset 
of descriptors [35]. As a result, the probability of generating 
0 for a gene was set greater (at least 60 %) than the value of 
1. The operators used here were the crossover and mutation 
operators. The application probability of these operators 
was varied linearly with a generation renewal (0–0.1 % 
for mutation and 60–90 % for crossover). The population 
size was varied between 50 and 250 for the different GA 
runs. For a typical run, the evolution of the generation was 
stopped when 90% of the generations took the same fitness. 
The fitness function used here was the leave-one-out cross-
validated correlation coefficient, Q2

LOO
. The GA program 

was written in Matlab 6.5 [36].
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Table 1.  Chemical structures and the corresponding observed and predicted pIC
50

 values by the MLR method.

No. General structure R
1

R
2

Exp. Pred.

1

N

S
N

N
H

O
R 2-Cl - 7.15 6.50

2 H - 5.55 5.71

3a 2-Me - 5.14 5.36

4 2-OMe - 5.14 5.28

5 2-OCHF
2

- 6.10 5.77

6 3-Me - 6.00 6.07

7 3-OMe - 5.32 4.94

8 4-OMe - 5.05 5.41

9a 4-Oxazole - 5.43 5.38

10 4-Piperidine - 5.19 5.33

11a 4-(N-Methyl) piperazine - 5.62 5.76

12 4-Morpholine - 6.15 6.18

13 2,4-Di-OMe - 5.55 5.71

14a 2-OMe,4-Morpholine - 5.92 5.67

15 2-OMe,4-(N-Methyl) piperazine - 6.80 7.08

16

MeN N NH

O

N

N
NOMe

- - 6.38 6.20

17

O N NH

O

N

N
NH

OMe

- - 7.70 7.49

18

N
H

O

NCl

R1

N
- 5.47 5.76

19

N

H
N

- 5.80 5.66

20

N
NH

- 6.18 5.66

21

N
NMe

- 6.15 5.94

22

N

R1

N
H

NH
N

N
- 7.15 6.50

23

N
NH

- 6.34 6.70

24 N - 5.71 5.61

Table 1. continued on next page
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Table 1. Continued.

No. General structure R
1

R
2

Exp. Pred.

25a

N

N

N

N
H

R2

R1

NH

H H 7.15 6.50

26 H OMe 7.82 6.99

27a OMe H 6.68 6.93

28 OMe OMe 6.74 7.28

29a H Cl 8.52 8.28

30 Cl H 6.95 7.04

31 Cl Cl 6.78 7.16

32 H Me 8.00 7.33

33 Me H 5.96 7.16

34

N
N

N

N
R1

R2

N
H

- 5.94 5.82

35a

N
H CN

- 6.36 6.55

36

N
H

NN
- 5.95 6.62

37 N
H N

N - 6.30 6.43

38 N
H N

- 5.09 5.14

39 N
H

NH2
- 5.89 5.87

40a

N
H

N - 6.04 5.43

41

N
H

NH - 6.65 7.05

42 N
H NH

- 5.52 6.12

43

N
H

H
N

- 6.50 6.78

44

N
H

NH - 7.41 7.27

45a

N
H

NH - 6.26 6.93

46a

N
N

N

N
R1

R2

N
H

H
N

- 7.72 6.62

Table 1. continued on next page
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848    Eslam Pourbasheer et al.

No. General structure R
1

R
2

Exp. Pred.

47a

N
NH

- 6.90 7.66

48 N

NH2

- 5.73 5.42

49
N

NH2 - 6.27 6.09

50 N
NH

- 6.31 6.25

51

N
N

N

N
H

R2

R1

Cl
NH

8.22 8.75

52 Cl

NH

9.00 8.50

53 Cl

N
H

8.05 8.60

54 OMe
NH

8.15 8.41

55 CN

N
H

7.02 7.66

56

N
N

N

N
H

NH

R1

Cl - 9.00 8.54

57 OMe - 8.22 8.07

58 CN - 8.40 7.61

59a

NMeO

- 8.10 8.16

60
N

N

- 8.15 8.04

61

N
H

N

- 8.70 7.88

62

NH

- 7.20 7.16

63 H2N

O

- 8.30 7.81

64

O

O - 6.58 6.85

65
N

O

- 7.31 7.07

aTest set

Table 1. Continued.
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Results and discussion

The diversity of the training set and the test set was analysed 
using the principal component analysis (PCA) method. The 
PCA was performed with the calculated structure descriptors 
for the whole data set to detect the homogeneities in the data 
set, and also to show the spatial location of the samples to 
assist the separation of the data into the training and test sets. 
The PCA results showed that three principal components 
(PC1, PC2, and PC3) described 73.05% of the overall variables, 
as follows: PC1 = 40.76%, PC2 = 17.76% and PC3 = 14.53%. 
Since almost all the variables can be accounted for by the first 
three PCs, their score plot is a reliable representation of the 
spatial distribution of the points for the data set. The plot of 
PC1, PC2, and PC3 displayed the distribution of compounds 
over the first three principal components space (Figure 1). 
This figure shows that the samples in both the training and 
the test sets seemed to be evenly scattered in the 3D space, 
and therefore it was feasible to split the data set. Moreover, 
the compounds in the training set were representative of the 
whole data.

After analysing splitting the data set into the training 
set and test set, the next step was to select the main factors 
which were the most important for the IRAK-4 inhibition 
activity of amides and imidazo[1,2-α] pyridines. As we do 

not yet know which descriptors, and which particular com-
binations, are related to the studied response and can be 
used in the predictive models, we applied genetic algorithms 
as the variable selection procedure to select only the best 
combinations (most relevant) for obtaining the models with 
the highest predictive power by using the training set. The 
seven most significant descriptors according to the GA-MLR 
algorithm are: the maximum atomic orbital electronic popu-
lation (MAOEP), path/walk 5 - Randic shape index (PW5), 
the molecular walk count of the order 09 (MWC09), Mor12m, 
G2p, R4e and nNHR.

The multi-collinearity between the above seven descriptors 
were detected by calculating their variation inflation factors 
(VIF), which can be calculated as follows:

VIF
1

1 2
=

−r
(1)

where r is the correlation coefficient of the multiple regres-
sion between the variables in the model. If VIF equals to 1, 
then no inter-correlation exists for each variable; if VIF falls 
into the range of 1–5, the related model is acceptable; and 
if VIF is larger than 10, the related model is unstable and a 
recheck is necessary [37]. The corresponding VIF values of the 
seven descriptors are shown in Table 2. As can be seen from 
this table, most of the variables had VIF values of less than 5, 
indicating that the obtained model has statistic significance.

To examine the relative importance as well as the con-
tribution of each descriptor in the model, the value of the 
mean effect (MF) was calculated for each descriptor. This 
calculation was performed with the equation below:

MF
d

d
j

j iji

i n

j iji

n

j

m= =

=
b

b

1∑
∑∑ (2)

Where MF
j
 represents the mean effect for the considered 

descriptor j, β
j
 is the coefficient of the descriptor j, d

ij
 stands 

for the value of the target descriptors for each molecule and, 
eventually, m is the descriptors number for the model. The 
MF value indicates the relative importance of a descriptor, 
compared with the other descriptors in the model. Its sign 
indicates the variation direction in the values of the activi-
ties as a result of the increase (or reduction) of the descriptor 
values. The mean effect values are shown in Table 2.

PC2 (17.76%)

1

0

−1

−2

−3
4

3
2

1
0

−1 −1
0

1
2

P
C

3 
(1

4.
53

%
)

PC1 (40.76%)

Training
Test

Figure 1.  The principal component analysis of the training and test sets.

Table 2.  The linear model based on the seven parameters selected by the GA-MLR method.

Descriptor Chemical meaning MFa VIFb

Constant Intercept - -

MAOEP Max atomic orbital electronic population −0.805 1.303

PW5 Path/walk 5 - Randic shape index −0.453 2.255

MWC09 Molecular walk count of order 09 −0.158 1.823

Mor12m 3D-MoRSE - signal 12/weighted by atomic masses 0.11 1.403

G2p 2st component symmetry directional WHIM index/weighted by atomic polarisabilities 1.768 1.438

R4e R autocorrelation of lag 4/weighted by atomic Sanderson electronegativities 0.609 1.701

nNHR Number of secondary amines (aliphatic) 0.071 1.709
aMean effect
bVariation inflation factors
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In a QSAR study, generally, the quality of a model is 
expressed by its fitting ability and prediction ability, and of 
these the prediction ability is the more important. In order 
to build and test the model, a data set of 65 compounds was 
separated into a training set of 52 compounds, which were 
used to build the model and a test set of 13 compounds, 
which were applied to test the built model. With the selected 
descriptors, we have built a linear model using the training 
set data, and the following equation was obtained:

pIC 14.461 2.955 3.355 0.760 MAOEP

35.258

50 = ± + ±

            +
( ) ( )

±± + ±

 − ± −

16.242 PW5 7.676 1.767 MWC09

0.838 0.267 Mor12m 86.0

( ) ( )
( ) 446 13.149 G2p

270 0.455 R4e 0.985 0.152 nNHR

±

   − 3. ± + ±
( )

( ) ( )

�

(3)

N
train

= 52, R2
train

= 0.852, RMSE
train

= 0.418, F = 36.083, 
Q2

LOO
 = 0.804, Q2

BOOT
 = 0.785, Q2

ext
 = 0.747, N

test
 = 13, R2

test
 = 0.759, 

RMSE
test

 = 0.506
In this equation, N is the number of compounds, R2 is the 

squared correlation coefficient, Q2
LOO

, Q2
BOOT

 and Q2
ext

 are 
the squared cross-validation coefficients for leave one out, 
bootstrapping and external test set respectively, RMSE is the 
root mean square error and F is the Fisher F statistic. The 
figures in parentheses are the standard deviations.

The built model was used to predict the test set data and 
the prediction results are given in Table 1. As can be seen from 
Table 1, the calculated values for the pIC

50
 are in good agree-

ment with those of the experimental values. The predicted 
values for pIC

50
 for the compounds in the training and test 

sets using equation 1 were plotted against the experimental 
pIC

50
 values in Figure 2. A plot of the residual for the predicted 

values of pIC
50

 for both the training and test sets against the 
experimental pIC

50
values are shown in Figure 3. As can be 

seen the model did not show any proportional and systematic 
error, because the propagation of the residuals on both sides 
of zero are random.

The real usefulness of QSAR models is not just their abil-
ity to reproduce known data, verified by their fitting power 
(R2), but is mainly their potential for predictive application. 
For this reason the model calculations were performed by 

maximising the explained variance in prediction, verified 
by the leave-one-out cross-validated correlation coefficient, 
Q2

LOO
. To avoid the danger of overfitting and the possibility 

of overestimating the model predictivity by using Q2
LOO

, and 
Q2

ext
, the internal predictive ability of the models was also 

verified using the bootstrap Q2
BOOT

 procedure, as is strongly 
recommended for QSAR modeling. The robustness of the 
proposed models and their predictive ability was guaranteed 
by the high Q2

BOOT
 based on the bootstrapping being repeated 

5000 times. The Q2
LOO

, Q2
ext

 and Q2
BOOT

 for the MLR model 
are shown in Equation 2. This indicates that the obtained 
regression model has a good internal and external predictive 
power.

Also, in order to assess the robustness of the model, the 
Y-randomisation test was applied in this study [20–21]. The 
dependent variable vector (pIC

50
) was randomly shuffled and 

a new QSAR model developed using the original independ-
ent variable matrix. The new QSAR models (after several rep-
etitions) would be expected to have low R2 and Q2

LOO
 values 

(Table 3). If the opposite happens then an acceptable QSAR 
model cannot be obtained for the specific modelling method 
and data.

Applicability domain
The Williams plot (Figure 4), the plot of the standardised 
residuals versus the leverage, was exploited to visualise the 
applicability domain [38]. The leverage indicates a com-
pound’s distance from the centroid of X. The leverage of a 
compound in the original variable space is defined as [39]:

R2 = 0.8516

4.5

5.5

6.5

7.5

8.5

9.5

4.5 5.5 6.5 7.5 8.5 9.5
Experimental (pIC50)

P
re

di
ct

ed
 (p

IC
50

)

Training

Test

Figure 2.  The predicted versus the experimental pIC
50

 by GA-MLR.

Experimental (pIC50)
−2

−1

0

1

2

4.5 5.5 6.5 7.5 8.5R
es

id
ua

l

Training
Test
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Figure 3.  The residual versus the experimental pIC
50

 by GA-MLR.

Table 3.  The R2
train

 and Q2
LOO

 values after several Y-randomisation tests.

Iteration R2
train

Q2
LOO

1 0.005 0.173

2 0.053 0.077

3 0.024 0.220

4 0.006 0.178

5 0.064 0.272

6 0.005 0.136

7 0.003 0.141

8 0.020 0.100

9 0.045 0.096

10  0.006 0.110
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h x X X xi i
T T

i=
−( ) 1

(4)

Where x
i
 is the descriptor vector of the considered 

compound and X is the descriptor matrix derived from the 
training set descriptor values. The warning leverage (h*) is 
defined as [40]:

(5)h 3 p 1 n∗ = + /( )

Where n is the number of training compounds, p is the 
number of predictor variables. A compound with h

i
 > h* 

seriously influences the regression performance, but it 
doesn’t appear to be an outlier because its standardised 
residual may be small, even though it has been excluded 
from the applicability domain. Moreover, a value of three 
for the standardised residual is commonly used as a cut-off 
value for accepting predictions, because points that lie ± 
3 standardised residuals from the mean will cover 99% of 
normally distributed data [41]. Thus the leverage and the 
standardised residual were combined for the characterisa-
tion of the applicability domain. From Figure 4, it is obvious 
that there are no outlier compounds with standard residuals 
>3δ for both the training and test sets. Also all the chemicals 
have a leverage lower than the warning h* value of 0.462.

Interpretation of descriptors
As well as demonstrating statistical significance, QSAR mod-
els should also provide useful chemical insights into the 
mechanism of inhibitory activity. For this reason, an accept-
able interpretation of the QSAR results is provided below. 
By interpreting the descriptors contained in the model, it is 
possible to gain some insights into factors which are related 
to the IRAK-4 inhibitor activity and brief descriptions of the 
descriptors are in Table 2.

From the seven selected descriptors only the MAOEP 
descriptor, as calculated by the CODESSA software, appears 
in the model. The MAOEP which belong to the quantum 
chemical descriptors is a simplified index to describe the 
nucleophilicity of molecules. As it is apparent from Table 2, 
the MAOEP mean effect has a negative sign, illustrating a 
greater mean effect value than that of the other descriptors. 

Therefore, this descriptor had a significant effect on the IRAK-4 
inhibition activity of the studied compounds. The negative 
sign suggests that the pIC

50
 value is inversely related to this 

descriptor. Subsequently, the increase in the nucleophilicity 
of the molecule results in a decrease in its pIC

50
.

The second descriptor is the path/walk 5 Randic shape 
index (PW5), which is one of the topological descriptors. 
The atomic path/walk indices are defined for each atom as 
the ratio between the atomic path count and the atomic walk 
count of the same length. Whereas the number of paths in 
a molecule is bounded and determined by the molecule’s 
diameter, the number of walks is unbounded. However, 
being interested only in quotients, the walk count is termi-
nated when it exceeds the maximum allowed length of the 
corresponding path [42]. The molecular path/walk indices 
are defined as the average sum of atomic path/walk indices of 
equal length. As the path/walk count ratio is independent of 
molecular size, these descriptors can be considered as shape 
descriptors. As is apparent from Table 2, the PW5 mean effect 
has a negative sign which indicates that the pIC

50
 is inversely 

related to this descriptor; therefore, increasing the PW5 of 
molecules leads to a decrease in its pIC

50
 values.

The molecular walk count of the order 09 (MWC09) 
is the third descriptor, appearing in the model. It is one 
of the molecular walk counts descriptors. Walk counts 
are atomic and molecular descriptors obtained from an 
H-depleted molecular graph. The molecular walk count is 
related to molecular brunching and size and in general to 
the molecular complexity of the graph [42]. The MWC09 
displays a negative sign, which indicates that the activity 
of the compounds is inversely related to the complexity of 
the molecules.

Mor12m is the forth descriptor, appearing in the model. 
It is one of the 3D-molecule representations of structures 
based on electron diffraction (3D-MoRSE) descriptors. The 
3D-MoRSE descriptors are derived from infrared spectral 
simulation using a generalised scattering function [42]. This 
descriptor was proposed as signal 12/weighted by the atomic 
masses which relates to the atomic masses of the molecule. 
The Mor12m displays a positive sign, which indicates that the 
pIC

50
 is directly related to this descriptor.

The 2st component symmetry directional WHIM index/
weighted by atomic polarisabilities (G2p) is the fifth descrip-
tor appearing in the model. It is one of the WHIM descriptors 
which are based on the statistical indices calculated on the 
projections of atoms along the principal axes. The algorithm 
consists of performing a principal components analysis on 
the centred Cartesian coordinates of a molecule by using a 
weighted covariance matrix obtained from different weigh-
ing schemes for the atoms. Directional WHIM symmetry 
descriptors are related to the number of central symmetric 
atoms (along the mth component), the number of unsymmet-
ric atoms and the total number of atoms of the molecule [42]. 
The atomic polarisabilities are one of the weighting schemes 
that are used for computing the weighted covariance matrix 
in this descriptor (G2p). The G2p mean effect has a posi-
tive sign which indicates that pIC

50
 is directly related to this 
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Figure 4.  The William plot of the GA-MLR model.
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descriptor; therefore, decreasing the G2p of molecules leads 
to decrease in its pIC

50
 values.

The sixth descriptor of the GA-MLR model was the R 
autocorrelation of lag 4/weighted by the atomic Sanderson 
electronegativities (R4e). This descriptor is a GETAWAY type 
and is related to the electronegativity of the atoms in the mol-
ecule. This descriptor displays a positive sign, which indicates 
that the pIC

50
 is directly related to the electronegativity of 

molecules.
The final descriptor is nNHR, which is the number of sec-

ondary amines. The nNHR mean effect demonstrates a posi-
tive sign, revealing that the IRAK-4 inhibition activity is directly 
related to the number of secondary amines in molecule.

Summarising, it can be concluded that nucleophilicity, 
molecular size, molecular complexity, atomic mass, atomic 
polarisability, atomic electronegativity and the number of 
secondary amines, all play an important role in the IRAK-4 
inhibition activity of compounds.

Conclusion

In this article, a QSAR study of 65 IRAK-4 inhibitors was per-
formed based on the theoretical molecular descriptors calcu-
lated by the DRAGON and CODESSA software and selected 
by genetic algorithm. The built model was assessed compre-
hensively (internal and external validation) and all the valida-
tions indicated that the QSAR model built was robust and 
satisfactory, and that the selected descriptors could account 
for the structural features responsible for the IRAK-4 inhibi-
tion activity of the compounds. By interpreting the molecular 
descriptors in the regression model, we can conclude that 
the activity of the studied compounds mainly depends on 
nucleophilicity, molecular size, molecular complexity, atomic 
mass, atomic polarisability, atomic electronegativity and the 
number of secondary amines. The QSAR model developed 
in this study can provide a useful tool to predict the activity 
of new compounds and also to design new compounds with 
high activity.
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